Implemented Aldous-Broder-Wilson Algorithm

This commit is contained in:
Kyler Olsen 2025-01-31 22:04:52 -07:00
parent afec3c04de
commit aa3b405188
3 changed files with 163 additions and 2 deletions

160
maze.py
View File

@ -1013,3 +1013,163 @@ class AldousBroder(VectorMaze):
if start[1] > end[1]: return VectorEnum.Down
if start[1] < end[1]: return VectorEnum.Up
return VectorEnum.Zero
class AldousBroderWilson(VectorMaze):
__cells: list[list[VectorEnum]]
__width: int
__height: int
__path: dict[tuple[int,int], VectorEnum]
__start: tuple[int,int] | None
__current: tuple[int,int]
__remaining: int
__switch: float
def __init__(
self,
width: int,
height: int | None = None,
*, switch: float = 0.5
):
self.__width = width
self.__height = height or width
self.__cells = [
list([VectorEnum.Null for _ in range(self.width)])
for _ in range(self.height)]
x, y = random.randint(0,self.width-1), random.randint(0,self.height-1)
self.__cells[y][x] = VectorEnum.Zero
self.__start = None
self.__path = {}
self.__current = (x,y)
self.__remaining = self.width * self.height - 1
self.__switch = switch
@property
def width(self) -> int:
return self.__width
@property
def height(self) -> int:
return self.__height
@property
def highlighted(self) -> tuple[int,int] | None:
if self.__start is not None:
for key, value in self.__path.items():
if value == VectorEnum.Zero:
return key
elif self.__remaining > 0: return self.__current
return None
def __getitem__(self, index: tuple[int,int]) -> VectorEnum:
x, y = index
return self.__cells[y][x]
def secondary(self, index: tuple[int,int]) -> VectorEnum:
if self.__start is not None:
if index in self.__path.keys():
cell: tuple[int,int] = self.__start
while self.__path.get(cell, VectorEnum.Zero) != VectorEnum.Zero:
if cell == index: return self.__path[cell]
cell = self.__next(cell, self.__path[cell])
return VectorEnum.Null
def step(self) -> bool:
if self.highlighted is not None and self.__start is not None:
highlighted = self.highlighted
neighbors = self._neighbors(highlighted)
cell = neighbors[random.randint(0, len(neighbors)-1)]
self.__path[highlighted] = self.__direction_wilson(
highlighted, cell)
if self.__cells[cell[1]][cell[0]] == VectorEnum.Null:
self.__path[cell] = VectorEnum.Zero
self.__optimize_path()
else:
cell: tuple[int,int] = self.__start
while self.__path.get(cell, VectorEnum.Zero) != VectorEnum.Zero:
self.__cells[cell[1]][cell[0]] = self.__path[cell]
cell = self.__next(cell, self.__path[cell])
self.__remaining -= len(self.__path)
self.__start = self.__new_start()
if self.__start is not None:
self.__path = {self.__start: VectorEnum.Zero}
else:
self.__path = {}
return True
elif self.highlighted is not None:
neighbors = self._neighbors(self.highlighted)
cell = neighbors[random.randint(0,len(neighbors)-1)]
if self.__cells[cell[1]][cell[0]] == VectorEnum.Null:
self.__cells[cell[1]][cell[0]] = self.__direction_aldous_broder(
self.highlighted, cell)
self.__remaining -= 1
self.__current = cell
if self.__remaining / (self.width * self.height) < self.__switch:
self.__start = self.__new_start()
if self.__start is not None:
self.__path = {self.__start: VectorEnum.Zero}
return True
else: return False
def __optimize_path(self):
if self.__start is not None:
purge = set(self.__path.keys())
cell: tuple[int,int] = self.__start
purge.remove(cell)
while self.__path.get(cell, VectorEnum.Zero) != VectorEnum.Zero:
cell = self.__next(cell, self.__path[cell])
purge.remove(cell)
for cell in purge:
del self.__path[cell]
def __new_start(self) -> tuple[int, int] | None:
empty = []
for x in range(self.width):
for y in range(self.height):
if self.__cells[y][x] == VectorEnum.Null:
empty.append((x,y))
if empty: return empty[random.randint(0,len(empty)-1)]
else: return None
def __direction_wilson(
self,
start: tuple[int,int],
end: tuple[int,int],
) -> VectorEnum:
if start[0] > end[0]: return VectorEnum.Left
if start[0] < end[0]: return VectorEnum.Right
if start[1] > end[1]: return VectorEnum.Up
if start[1] < end[1]: return VectorEnum.Down
return VectorEnum.Zero
def __direction_aldous_broder(
self,
start: tuple[int,int],
end: tuple[int,int],
) -> VectorEnum:
if start[0] > end[0]: return VectorEnum.Right
if start[0] < end[0]: return VectorEnum.Left
if start[1] > end[1]: return VectorEnum.Down
if start[1] < end[1]: return VectorEnum.Up
return VectorEnum.Zero
def __next(
self,
index: tuple[int,int],
direction: VectorEnum,
) -> tuple[int,int]:
if direction == VectorEnum.Up: return index[0], index[1]-1
elif direction == VectorEnum.Down: return index[0], index[1]+1
elif direction == VectorEnum.Left: return index[0]-1, index[1]
elif direction == VectorEnum.Right: return index[0]+1, index[1]
else: return index[0], index[1]

View File

@ -7,6 +7,6 @@
+ Prim's Algorithm
+ Wilson's Algorithm
+ Aldous-Broder Algorithm
- Aldous-Broder-Wilson Algorithm
+ Aldous-Broder-Wilson Algorithm
- Kruskal's Algorithm
- Eller's Algorithm

View File

@ -124,7 +124,8 @@ VEC_MAZE_SIZE = (MAZE_SIZE + 1) // 2
# my_maze = maze.RecursiveDivision(MAZE_SIZE, binary=True)
# my_maze = maze.VectorWrapper(maze.Prim(VEC_MAZE_SIZE))
# my_maze = maze.VectorWrapper(maze.Wilson(VEC_MAZE_SIZE))
my_maze = maze.VectorWrapper(maze.AldousBroder(VEC_MAZE_SIZE))
# my_maze = maze.VectorWrapper(maze.AldousBroder(VEC_MAZE_SIZE))
my_maze = maze.VectorWrapper(maze.AldousBroderWilson(VEC_MAZE_SIZE))
# for _ in range(512): my_maze.step()
# for _ in range(2048): my_maze.step()